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It is worth mentioning that, the β
2
 and β

1
ARs have over the 

decades been implicated for their physiological importance in 
maintaining cardiovascular and pulmonary homoeostasis (via 
the β

2
AR) and given their significance in modulating adrenergic 

tone in the heart per se, proved to be the founding basis for the 
development and characterization of beta-blockers for the failing 
heart.2,3 In many respects however, the credit to explaining the 
mechanistic basis of beta-blocker action is unrestrictedly attrib-
uted to Lefkowitz and colleagues who contributed towards the 
discovery and extensive characterization of two novel classes of 
signaling molecules, viz., the G protein-coupled receptor kinases 
(GRKs) and the β-arrestins.4,9 Using the β

2
-subtype of adrener-

gic receptors as a model system, the past 20 y have significantly 
highlighted the importance of these two molecules working in 
concert towards furthering our understanding of homologous 
desensitization and waning of the receptor signal upon agonist-
induced stimulation of 7TMRs4 (Fig. 1).
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The β2-adrenergic receptor (β2AR) is a prototypical Gs-
coupled receptor belonging to the superfamily of seven 
transmembrane spanning heptahelical receptors (7TMRs or G 
protein-coupled receptors [GPCRs])—therapeutically the most 
diverse and accessible class of cell surface receptors. The classic 
pathway of β2AR signaling (Fig. 1) is triggered by activation of 
the heterotrimeric G protein Gs by agonists (catecholamines—
noradrenaline and adrenaline). This in turn activates adenylyl 
cyclase leading to the generation of second messenger 
signaling molecules (cyclic adenosine monophosphates, 
cAMP) which subsequently activate protein kinase A (PKA) as 
well as some ion channels, such as the class C type of L-type 
calcium channels, CaV1.2.31 Here in we review how trafficking 
and signaling of the β2AR is regulated by the post-translational 
modification, ubiquitination.1
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However, in the past 15 y, β-arrestins have ushered in a para-
digmatic shift in the way we look at signal transduction across 
a cell membrane (Fig. 1). Studies on the angiotensin II Type 1a 
(AT

1a
R), the parathyroid hormone type 1 (PTH

1
R) receptors and 

other 7TMRs have shown the importance of β-arrestins as sig-
nalosome scaffolds in their own right by relaying downstream the 
signal received from extracellular cues via a mechanism indepen-
dent of heterotrimeric G protein coupling to a 7TMR5-8 (Fig. 1). 
In addition to this new concept of biased signaling via β-arrestins 
and not G proteins at the membrane, we and other have also 
shown the role of β-arrestins in maintaining the cell surface lev-
els of the β

2
AR by demonstrating their role in clathrin-dependent 

endocytosis of 7TMRs.10 In particular, our work has helped dem-
onstrate and attribute a new dimension to ubiquitination, which 
insofar was generally conceived to mark proteins for degradation 
by the 26S multi-subunit complex of proteasomal proteases in 
an ATP-dependent manner and no role whatsoever in regulat-
ing 7TMR signaling in terms of cell surface levels as also down-
stream upon a prolonged tone of agonist-stimulation11 (Fig. 1). 
As we now see it, ubiquitination is today appreciated as having 
multi-faceted roles in an array of signaling paradigms including 
the role of linear polyubiquitin chains in pathophysiological roles 
of the NFκB pathway in cancer as put forth in the work of Ivan 
Dikic and Kazuhiro Iwai.11-13

In this mini-review/addenda to our recently published work 
in The Journal of Biological Chemistry1 we wish to call attention 
to one such aspect, viz., the role of ubiquitination in mediating 
downregulation and long-term desensitization of 7TMRs upon 
agonist-induced stimulation (Fig. 1).

Agonist-stimulated internalization of receptors and traffick-
ing to lysosomes for degradation has been addressed by many 
studies in sofar. However, the myriad aspects of this regulation 
lack detailed understanding and one has witnessed the unfolding 
of novel insights in recent times in this regard. In our recently 
published work in reference 1, the use of the β

2
AR as a model 

system to delineate the motifs involved in ubiquitination of a 
GPCR and its subsequent targeting to lysosomes appeared justi-
fied, for agonist-induced ubiquitination of a mammalian GPCR, 
regardless of whether the receptor was studied endogenously or 
in a heterologous expression system, was first reported for the 
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to lysosomal compartments for further proteolytic processing.18 
However, until recently there has not been a detailed examina-
tion and appreciation into highlighting the exact domains in a 
GPCR where such ubiquitin attachment or conjugation could be 
ascertained.

Previously, Marchese and Benovic elicited the role of the car-
boxyl terminus in agonist-promoted ubiquitination and lysosomal 
sorting of the chemokine receptor, CXCR4.19 However, while 
mutation of the three carboxyl tail lysines in the SSLKILSKGK 
motif abrogated CXCR4 ubiquitination and lysosomal sorting, it 
had no effect on receptor endocytosis.19 In addition a mutation 
of a single lysine in the vasopressin V

2
 receptor was also shown to 

abrogate its ubiquitination and degradation profile.20 Interestingly 
however, with regard to the β

2
AR, it was recently demonstrated 

that lysines in the carboxyl tail of the β
2
AR were the main sites 

of receptor ubiquitination but mutation of these lysines did not 
eliminate receptor ubiquitination, and concomitantly the roles 
of lysines in other receptor domains of the β

2
AR were not inves-

tigated.21 Hence, in our recent paper in The Journal of Biological 
Chemistry, we sought to look into this aspect of prolonged ago-
nist-promoted ubiquitination and intracellular trafficking of the 
β

2
AR and thereby identify the exact motifs involved in this post-

translation modification of the β
2
AR combining two approaches 

including standard biochemistry and confocal microscopy to 
mass spectrometry-based proteomic analyses.1

In keeping with our previous findings, we observed lysosomal 
localization of the β

2
AR upon prolonged agonist-stimulation.11,14,18 

human β
2
AR.14 However, the hypothesis that ubiquitination as a 

process per se could regulate cell surface levels of transmembrane 
proteins was inspired by work on yeast with the yeast peptide 
transporter, Ste6.15 Until recently, before work on the β

2
AR and 

human GPCRs bore prominence, the α-factor pheromone recep-
tor (Ste2p; a GPCR) from Saccharomyces cerevisiae that is hyper-
phosphorylated and ubiquitinated upon binding to its agonist, 
the α-factor, served as the essential paradigm to studying GPCR 
ubiquitination and its effect on the intracellular trafficking path-
ways of GPCRs.15,16

Ubiquitin is a ubiquitous, small 76 amino acid protein which 
is attached by a covalent post-translational modification to its 
target substrate protein at canonical lysine resides, marking it 
for degradation.17 Typically the extension of the polyubiquitin 
chain occurs at lysine 48 (K48) or lysine 63 (K63).17 In our previ-
ous work, we were able to show that removal of all endogenous 
lysine residues from the β

2
AR rendered the receptor incapable 

of both ubiquitin conjugation and agonist-stimulated degrada-
tion, thus confirming the dependence of the receptor degradation 
on its ubiquitination profile.11 In addition, we demonstrated that 
ubiquitination of β-arrestins themselves enhanced their propen-
sity for subcellular localization at the membrane enabling forma-
tion of tight signalosome complexes with the β

2
AR leading to 

receptor endocytosis and concomitant activation of MAP kinase-
ERK 1/2.11 In conjunction to this work, we also identified the 
HECT domain containing E3 ubiquitin ligase, Nedd4 to medi-
ate ubiquitin conjugation to the β

2
AR thus targeting the receptor 

Figure 1. (A) According to the classic GPCR signal ing paradigm, upon agonist binding the β2AR is activated leading to heterotrimeric G protein 
coupling to the β2AR, dissociation of the Gα from the βγ-subunits and subsequent signaling downstream. Following receptor activation, the agonist-
bound β2AR is phosphorylated on its carboxyl tail (CT) by G protein-coupled receptor kinases (GRKs) leading to recruitment of β-arrestins and short-
term desensitization of the β2AR. Consequently, β-arrestins also manifest in a second round of extended signaling (independent of G proteins) leading 
to the prolonged agonist-induced effect as observed in several receptor systems. (B) In addition, the GRK-phosphorylated and β-arrestin scaffolded 
β2AR is ubiquitinated at lysine residues on two distinct receptor domains: intracellular loop 3 (L3) and the carboxyl tail (CT), which signals the β2AR to 
lysosomal degradation. The global reduction in cellular receptor levels thus characterizes and provides an explanation for the long-term desensitiza-
tion of GPCRs upon prolonged agonist-stimulation.
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Although a similar approach has previously been employed 
to reveal novel ubiquitination sites in a variety of signaling 
molecules including X-linked inhibitors of apoptosis proteins 
(XIAPs),25 and G proteins themselves,24 to our knowledge, this 
is the first independent report sought using a mass spectrometry-
based proteomic approach towards identifying distinct receptor 
domains involved in ubiquitination and subsequent intracellular 
trafficking to lysosomes of a prototypic GPCR upon prolonged 
agonist-induced stimulation. This approach helped reveal signa-
ture peptides with distinct Lys-Gly-Gly branch motifs and a mass 
shift of 114.0429 Da that allowed the subsequent identification 
of the candidate lysine residues for ubiquitin conjugation, viz., 
Lys-263 and Lys-270 in L3 and Lys-348, Lys-372 and Lys-375 
in CT. The specificity of the LC-MS/MS approach can well be 
appreciated from the fact that no ubiquitinated receptor peptides 
whatsoever were obtained in unstimulated cell samples, hence 
corroborating our overall experimental findings eliciting ubiqui-
tination as an essential pre-requisite for efficient sorting to lyso-
somal compartments.

The identification of the sites in the intracellular loop 3 is 
of prime importance from the consideration of its role in recep-
tor-G protein coupling or recruitment of β-arrestins to GRK-
phosphorylated receptors. A decade ago, Gether, Javitch and 
colleagues26 had demonstrated the existence of an ionic lock in 
the β

2
AR-wild type comprised of a salt bridge between Arg-131 

in helix 3 and Glu-268 in helix 6—a fact which was at the time 
strongly supported by the crystal structure of rhodopsin in the 
inactivated state.27 Under basal conditions, when the β

2
AR-wild 

type is unstimulated and thus in the inactive state, it was hypoth-
esized that the inactive state of the receptor was conceived due to 
this ionic lock which constrains the movement of the two helices 
and thus restricts the necessary shift in the conformational equi-
librium from the inactive state to the active state of the receptor 
upon agonist binding. However, by introducing charge neutral-
izing mutations on Arg-131 and Glu-268 in helix 3 and helix 6, 
respectively, Gether, Javitch and colleagues not only disrupted the 
salt bridge interaction between the two residues, but rather signifi-
cantly enhanced the basal activity of the β

2
AR-mutant compared 

to β
2
AR-wild type as determined from cAMP accumulation levels 

in pindolol-treated cell samples transfected with the wild-type or 
mutant β

2
ARs thereof in reference 26. Recent crystal structures 

of non-rhodopsin GPCRs like the β
2
AR and the β

1
AR from the 

groups of Kobilka,28 Schertler28,29 and Tate30 have highlighted the 
role of helix 3 and helix 6 in maintaining or shifting the confor-
mational equilibrium from the inactive to the active state upon 
agonist-stimulation and breaking of this ionic lock. Hence, in 
consonance with the underlying structural framework of receptor 
activation, we conceive it to be a likelihood that Lys-263 in L3 in 
close proximity to Glu-268 in helix 6 might correlate with confor-
mational changes and/or receptor activation upon disruption of 
the ionic lock as an event facilitating agonist-induced ubiquitina-
tion of the β

2
AR. However, it is important to bear in mind that 

given the lack of structural details regarding the CT that can be 
ascertained from the various structures of mutant receptors due to 
crystallographic constraints, the structure-function correlation of 
ubiquitination at Lys-340, Lys 372 and Lys-375 in the CT is open 

However, inhibition of lysosomal proteases led to marked sta-
bilization of the β

2
AR in lysosomal compartments. In contrast 

however, when the 26S multi-subunit proteasomal complex was 
inhibited, the misfolded or immature (not fully glycosylated) 
β

2
ARs that escaped the stringent ER quality control machinery 

were localized in ER resident compartments as highlighted by 
our observed staining pattern of the β

2
AR with the ER resident 

marker for Calreticulin. These observations were validated in 
experiments conducted in the presence of the protein synthe-
sis inhibitor, cycloheximide (CHX). As mentioned above, we 
previously demonstrated that mutating all of the endogenous 
lysines in the β

2
AR rendered the receptor incapable of ubiquitin 

conjugation. Hence when the β
2
AR devoid of all endogenous 

lysine residues (β
2
AR-0K) was expressed heterologously, we 

observed that the β
2
AR did not localize to lysosomal compart-

ments rather, the bulk of the β
2
AR pool recycled back to the 

cell membrane. This experiment clearly elicited the role of β
2
AR 

ubiquitination for sorting to lysosomal compartments. In this 
regard, it is worth noting that as a corollary to this line of think-
ing, the role of deubiquitination (or the removal of conjugated 
ubiquitin moieties from target substrate proteins by specialized 
enzymes termed ubiquitin specific proteases belonging to the 
family of deubiquitinating enzymes, DUBs) in regulating cell 
surface levels of GPCRs has been shown for the A

2A
 subtype of 

adenosine receptors by the ubiquitin specific protease4 (USP4).22 
In our own work, we have recently shown that deubiquitination 
of the β

2
AR by the USP33, abrogated the localization status of 

the β
2
AR in the lysosomes and rather asserted for its acceler-

ated delivery in recycling mode back to the cell membrane.23 
Consequently, as expected, the catalytically inefficient mutant 
of USP33 did not inhibit agonist-induced ubiquitination and 
lysosomal trafficking of the β

2
AR—a finding recapitulated with 

its homolog, viz., USP20.23 These two notable accounts inad-
vertently showed that ubiquitination/de-ubiquitination act as a 
specific molecular switch at the level of post-translational modi-
fication to maintain the cell surface levels of at least two impor-
tant, albeit distinct classes of G

s
 coupled receptors, in response 

to agonist-stimulation, while at the same time, maintaining a 
state of homoeostasis in global receptor levels in the cell. Thus, 
it was but pertinent to work towards delineating the sequence 
motifs involved in the eventual conjugation of ubiquitin to the 
β

2
AR.
From our mutational analysis, we observed that only β

2
AR-

wild type and mutant β
2
AR with lysines in intracellular loop 3 

(L3) and the carboxyl tail (CT) demonstrated ubiquitination, 
as opposed to the mutants devoid of (β

2
AR-0K) or harboring 

individual lysines in the intracellular loops 1 (L1) and 2 (L2). 
Additionally, it was of particular excitement to learn that ubiqui-
tination within just one of these domains, viz., L3 or CT sufficed 
akin to the β

2
AR-wild type to target the receptor to lysosomes 

after ubiquitination (Fig. 1) as determined by radioligand bind-
ing experiments. These experiments were successfully validated 
using a complementary approach (LC-MS/MS analysis) where 
we sought and indeed identified the exact lysine residues in L3 
and CT to mediate the pre-requisite ubiquitin conjugation of the 
β

2
AR before it is sorted for lysosomal degradation.
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for debate. But, given that the CT of a GPCR functions as the 
docking platform for the, recruitment of GRKs and β-arrestins 
and that GRK phosphorylation precedes β-arrestin recruitment 
and subsequent trafficking to clathrin-coated pits, the role of these 
ubiquitinated residues in the CT can in no way be underestimated.

In summary, we have thus validated the previous hypothesis 
that agonist-induced ubiquitination marks GPCRs for degrada-
tion in lysosomal compartments and not proteasomes, for which 
the latter can be considered largely dispensable. Furthermore, 
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our complementary approach combining proteomics with and 
standard biochemistry and molecular techniques highlighted the 
actions of two distinct receptor domains working in concert to 
direct agonist-induced ubiquitinated β

2
ARs for lysosomal deg-

radation. It would thus be of general interest for the field to con-
ceive the implication of this finding in terms of specificity or a 
more generic process while considering the inherent differences 
in the CT from species and receptor subtypes as elicited in crystal 
structure determinations.


